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Abstract

The conventional Polynomial cancellation coded orthogonal frequency division multiplexing (PCC-
OFDM) uses a linear combination of several OFDM single carriers. The frequency spectrum of the
combination is decaying faster than the frequency spectrum of a single carrier. The sidelobes of one
carrier is partly cancelled by the others. This is also called the ICI self cancellation property.

We introduce here a new method to construct a hole orthonormal basis on top of several OFDM single
carriers. The Spectrum of each vector in the linear subspace spanned by this basis is decaying faster than
a OFDM single carrier.

On base of this new method, we could de�ne new modulation schemes, which are decaying fast in
frequency domain and are very spectral e�cient.
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1 Introduction

The frequency domain representation of a timelimited function between the points −π and +π is given by
(see Appendix A):

F(ω) =
∞∑

k=−∞

ck ·
sin(ωπ − kπ)
ωπ − kπ

(1)

The translations of the functions sinc(x) := sin(πx)/πx are a orthonormal basis of the frequency domain
(Hilbert space) of all timelimited functions between −π and +π.

We intend to construct fast decaying modulation functions. It is su�ce for us to use only a �nite sum of
translated sinc functions. For example we are looking at a calculation with only 3 terms.

G(x) = c1 ·
sin(x+ π)
x+ π

+ c2 ·
sin(x+ 2π)
x+ 2π

+ c3 ·
sin(x+ 3π)
x+ 3π

(2)

=
(
−c1
x+ π

+
c2

x+ 2π
+
−c3
x+ 3π

)
· sin(x) (3)

=
(
−c1(x+ 2π)(x+ 3π) + c2(x+ π)(x+ 3π)− c3(x+ π)(x+ 2π)

(x+ π) · (x+ 2π) · (x+ 3π)

)
· sin(x) (4)

=
(

(−c1 + c2 − c3) · x2 + (−c1 · 5π + c2 · 4π − c3 · 3π) · x− c16π2 + c23π2 − c32π2

(x+ π) · (x+ 2π) · (x+ 3π)

)
· sin(x) (5)

At the numerator is a polynomial of x with coe�cients composed of the ck. If the polynomial in the numerator
is of low degree, the function is decaying fast. If the original coe�cients ck are in special linear relations, you
can even make the numerator to a constant. For example we are choosing c1 = 1

2 c̃, c2 = c̃, c3 = 1
2 c̃. This

gives us following result:

G(x) =
(

−π2 · c̃
(x+ π) · (x+ 2π) · (x+ 3π)

)
· sin(x) (6)

If the original coe�cients ck are in special linear relations, the sidelobes of the single carriers are self cancelling
each other. Amplitudes of standard OFDM single carriers (without cyclic pre�x and windowing) are decaying
with O( 1

x ). Amplitudes of a linear combination of n single carriers can decay in the best case with O( 1
xn ).

This possibility of self cancelation of the sidelobes is already discussed in literature. Zhao, Y. and Haggman,
S.G. has called this property ICI self-cancellation [1, 2].

Armstrong et al. [3�5] has called the resulting modulation scheme Polynomial Cancellation Coding (PCC-
OFDM).

This type of modulation is given, if you modulate the fast decaying linear combinations, instead of the single
carriers. This modulation is generating less adjacent channel power, has less Inter-Channel-Interference (ICI)
and is less sensitive to frequency o�sets.

With the loss of modulateable carriers you lose usally spectral e�ciency. If you have less modulateable
carriers, you can have a higher signal to noise ratio on the remaining carriers. But this is usally not as good
as having more orthogonal carriers.

There are other methods trying to exploit the self-cancellation property. Subcarrier weighting [6], cancellation
carriers [7] or multiple-choice sequences [8] are such methods.
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2 Construction of new types of modulation

In PCC-OFDM you have choosen only one linear combination out of n carriers. We want to choose several
linear combinations forming a orthonormal basis. For modulation we modulate each new basis vector distinct
from each other. So we can reduce the loss of degrees of freedom and remain the spectral e�ciency.

This was the intermediate result from above:

The combined frequency domain function of n OFDM single carriers you can write as:

G(x) =
Polynomialn−1(x)
Polynomialn(x)

· sin(x) (7)

The denominator is a �x polynomial of degree n. The denominator is not dependent on the coe�cients ck of
the OFDM single carriers. At the roots of the denominator are at the roots of the Sinus. Thus the term is
well de�ned.

In the numerator can be dependent on the coe�cients ck a polynomial of degree n− 1. If you want to have
a high decay of hole term against +/−∞, there should be a polynomial of low order in the numerator.

I want also to mention here, that we have a nice chain of Isomorphism and Homomorphism. The Hilbert
space of time limited functions with Norm L2 has a Isomorphism to the fourier space with in�nit numbers
of coe�cients and the euclidean norm ‖ · ‖2. Since we could only use a �nite number of carriers for practical
reasons, we have a Homomorphism to the subspace of n carriers (Rn) with the euclidean norm ‖ · ‖2. And
further we have now a Isomorphism into the space of polynomial functions of degree n− 1 in the numerator.
The norm of this polynomial space is induced by Isomorphism.

How could we calculate the norm of a polynomial in this induced norm? We recalculate the coe�cients of
the OFDM single carriers and using the norm on top of this coe�cients.

This coe�ceints are given from the evaluation of the polynomial at the position of the OFDM single carrier
and a devision through a �x weighting. This weighting is given by the Sinus and the polynomial in the
denominator. The Singularity of the Sinus is lifting the root of the polynomial in the denominator. But
don't forget the resulting sign at each second carrier.

After this necessary preparations, we could easily construct new modulation schemes.

All orthonormal basis vectors in the space of polynomials are de�ning a new modulation. On each basis
vector you can independently apply a QAM or PSK-Modulation.

We want to construct such a basis of fast decaying basis vectors. We are using the linear subspace of all
polynomials of degree m − 1 with m ≤ n. The decay of the amplitude in the frequency domain is then
proportional to O( 1

x1+n−m ).

A basis of this linear subspace are for example the polynomials x0, x1, ..., xm−2, xm−1. With the Gram�
Schmidt process you can easily made this to a orthonormal basis. For each basis vector of such a constructed
basis, the amplitude in the frequency domain will fall with at least O( 1

x1+n−m ).

OFDM is resistent against multipath fading, because its subcarriers are localized in frequency domain. Our
newly constructed orthonormal basis should also be localized in frequency domain and should not be dispersed
to much. Our �rst approach is perhaps the opposite. Di�use in the frequency domain, localised in the time
domain.

Since you can rotate and re�ect these basis vectors you can �nd a better basis for multipath fading conditions.
Perhaps you can write a numerical search algorithm which �nds this basis. A good criterion would be the
sum (or max value) of variances of the basis vectors in the frequency domain. If you don't want to use the
variance, you could also look at the max-values of the basis vectors with norm 1 in frequency domain.
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Good seeds of a numerical search algorithm are given by Lagrange polynomials. A basis of Lagrange poly-
nomials are given through m roots. Every basis polynomial is using m − 1 roots and is usually set at the
omitted root to 1. We can now try to guess good positions for roots and use the Gram�Schmidt process to
make them orthonormal.

If we could �nd exactly the roots, so that the Lagrange polynomials are orthogonal in the induced norm, we
would also have a good orthonormal basis for multipath fading conditions. The set of roots is given by m
variables. The orthogonality between basis functions gives us m− 1 equation. The last degree of freedom is
used to center the basis functions in the intervall. This should make the solution unique, if it exists.

A better question is: Does such a solution exist? Perhaps not all Polynomials have m − 1 roots. The roots
are perhaps complex numbers instead of real numbers. In practice this roots exists and they are real.

To �nd such roots, I have developed a approximation procedure. This is based on the Newton's method and
implies common roots. The optimisation criterion is the orthogonality of the basis vectors.

3 Computational demand

After we selected m polynomials, we can genarate a real matrix, which transforms n complex values of the
OFDM single carriers into complex values in the m dimensional basis.

So we have a m × n-Matrix. We need for a matrix multiplication 2 · n ·m real multiplications or 1
2 · n ·m

complex multiplications.

A such matrix-multiplication is for huge n and m computational expensive. If you have a lot of carriers,
you should devide the carriers into groups and use the new method only on the groups. This reduces also
Inter-Channel-Interference (ICI).

If you have N OFDM single carriers and a group size of n. So you have N
n groups. The computational

demand ist then N
n · 2 · n ·m real multiplications.

Example:

For N = 1024, n = 16 and m = 12 you have 1024 · 2 · 12 = 24576 real multiplications for all matrix
multiplications. The also necessary Fourier transform needs additional 2 · 1024 · log2(1024) = 20480 real
multiplications (radix-2 algorithm). The amplitude in this example is decaying with O( 1

x5 ), The power
spectrum is decaying with O( 1

x10 ).

There seems to be the chance of a fast version. A simple idee is to combine the matrix multiplication with
the �rst log2(n) steps of the FFT. But this results in a complex matrix multiplication instead of a real matrix
multiplication. So this would not help to reduce multiplications.

4 Application in practice

The new modulation was constructed for exactly one determined time period. You can not apply a cyclic
pre�x. But you can pre�x the signal with zeros. (Zero-Padding or Zero-Pre�x). In the receiver you can take
the guard intervall and add it to the begin of the analyzed intervall. This reconstructs the orthogonality
destroyed by multipath fading. The disadvantage is, that you copy additional noise to the signal.

The Guard-Intervall can be shorter, if you have dropped several polynomial degrees (n−m). In this case the
functions in time domain are at the interval endpoints n−m− 1 times continuous di�erentiable (We assume
zero-padding). The time domain functions at the endpoints are increasing or decreasing slow. In this case
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they are robust against multipath fading even without guard intervall.

OFDM has been often applied with cyclic pre�x and windowing. Windowing has needed some additional
time inside guard interval. Since we don't need windowing, we can adjust our guard interval.

To reduce adjacent channel power OFDM has left guard carriers unmodulated at the edges of the transmission
spectrum (guard band). Since with the new modulation scheme the power spectrum is decreasing faster, you
can use more carriers. At the edges of the transmission spectrum you can use more dropped dimensions
n−m as in the middle. So you can use the transmission spectrum more e�cient.

The peak-to-average power ratio (PAPR) is bad. You should combine this modulation with a method to
reduce PAPR. Most PAPR-Reduction methods used for OFDM are also applicable to the proposed modu-
lation. There is an overview article of peak-to-average power ratio reduction techniques from Han, S.H. and
Lee, J.H. [9].

An important di�erence to OFDM is the fact that the power envelope in time is not constant. The amplitudes
are falling smooth to zero at the tails of the transmission symbol in time domain. This results in a somewhat
worser PAPR. But you can easily combat this disadvantage by translating some carriers in time domain.

If you have a lot of carriers, and you have divided them into groups, you can translate hole groups in time
domain, but you must preserve orthogonality.

If your group size is an exponent of 2 (2n members), you can do the translation inside a classical FFT. The
�rst n steps of the inverse FFT in the transmitter will only do multiplications and additions inside your
groups. More precisely the �rst n steps will transform the coe�cients of the carriers of your group to the
time domain representation of your groups. The additional steps of the FFT will only do some frequency
multiplexing of your groups.

So the ideal moment to do the translations and mixing with prevoious or next symbol data would be after
n steps of the FFT. The orthogonality in this case would be preserved. The computational demand for
translations is very low. No multiplications or additions would be required. Demand of computational
ressources are more continous in time and perhaps you achieve a better latency.

Advanced PCC-OFDM OFDM with CP and windowing

Multipath fading very good very good

Spectral e�ciency can be even better, depends on parameters good

Adjacent channel power can be very good, depends on parameters average, depends on carrier count

PAPR bad bad

ICI very good between groups, bad inside groups bad

Computational demand higher, depends on groupsize today, you can say low

Scalability very good good

Table 1: Feature comparison table, Note: No BER-Simulations have been done

5 TODO

Bit-Error-Rate - Simulations under various conditions. Comparision with other modulation methods.

Usage in practice.

If you not use all lost degrees for a fast decay in frequency domain, you can perhaps optimize to other
criterions. (Stability against frequency o�sets, frequency dispersion)

Fast version of calculation
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6 Changes

Version 1.1 (April 3, 2010)

Added method for PAPR-Reduction through translation of carriers in time domain.

Version 1.0 (February 6, 2010)

Initial publication

7 Appendix A

Time limited Functions between −π und +π you can write as:

f(t) =
a0

2
+
∞∑
k=1

(ak · cos(kt) + bk · sin(kt) · 1[−π,π](t)) (8)

We use the complex Version:

f(t) =
1√
2π
·
∞∑

k=−∞

ck · eikt · 1[−π,π](t) (9)

In the frequency domain you retrieve:

F(ω) =
1√
2π

∫ ∞
−∞

1√
2π
·
∞∑

k=−∞

ck · eikt · 1[−π,π](t) · e−iωt dt (10)

=
1
2π

∞∑
k=−∞

ck ·
∫ π

−π
ei(k−ω)t dt (11)

=
1
2π

∞∑
k=−∞

ck ·
ei(k−ω)π − e−i(k−ω)π

i(k − ω)
(12)

=
∞∑

k=−∞

ck ·
ei(k−ω)π − e−i(k−ω)π

i2(k − ω)π
(13)

=
∞∑

k=−∞

ck ·
sin((k − ω)π)

(k − ω)π
(14)

=
∞∑

k=−∞

ck ·
sin(ωπ − kπ)
ωπ − kπ

(15)
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